T.C.
BAHCESEHIR UNIVERSITY

FACULTY OF ENGINEERING AND NATURAL SCIENCES

AUTONOMOUS VEHICLE-PROJECT 1080

Capstone Project Final Report

Denizhan Aksakal-SEN
Mehmet Fahri Bilici-CMP
Senem Tugg¢e Demiral-CMP
Zeynep Ergin-CMP
Alperen Ertiirk-EEE

Dr. Andrew John Beddall
Dr. Gorkem Kar
Dr. Ozge Yiicel Kasap

ISTANBUL, May 2020

STUDENT DECLARATION

By submitting this report, as partial fulfillment of the requirements of the Capstone course,
the students promise on penalty of failure of the course that
« they have given credit to and declared (by citation), any work that is not their own
(e.g., parts of the report that is copied/pasted from the Internet, design or construction
performed by another person, etc.);
« they have not received unpermitted aid for the project design, construction, report or
presentation;
« they have not falsely assigned credit for work to another student in the group, and not
take credit for work done by another student in the group.

ABSTRACT
AUTONOMOUS VEHICLE

Denizhan Aksakal-SEN
Mehmet Fahri Bilici-CMP
Senem Tuggce Demiral-CMP
Zeynep Ergin-CMP
Alperen Ertiirk-EEE
Cankat Sara¢-EEE

Faculty of Engineering and Natural Sciences

Dr. Andrew John Beddall
Dr. Gorkem Kar
Dr. Ozge Yiicel Kasap
May 2020

Abstract — Autonomous vehicles aim to provide a more comfortable drive with fewer
errors by reducing the human factor. With low-cost components which provide the vehicle to
detect objects, lines and line angles as visual inputs, distance measurements, and decisions with
respect to those inputs while using Raspberry Pi’s processor unit to compute those decisions, it
is aimed to achieve such a status where vehicle moves according to the limitations. This report
provides the process of verification and the progress of making an autonomous vehicle.

Key Words: Autonomous, YOLO, Hough Transform, Euclidean Transform, Canny Detection,
PWM Signal, Communication, Optimisation,

TABLE OF CONTENTS

F N S 1 2 ¥ X O PSPPSR i
TABLE OF CONTENTS ..ottt sttt sttt nne e enennas Y
LIST OF TABLES ...ttt sttt sttt viii
LIST OF FIGURESottt ettt et e be e e snbe e et e e e nnaeeennaeeans IX
LIST OF ABBREVIATIONS ...ttt e e e e X
1.1. Identification Of the NEEd..........cccoiiiiiiiiiiie e 1

1.2. Definition of the Problem..........ccoooiiiiiii e 1

1.3. Standards and CONSIIAINTSoiieiiiieiieie et enes 2

1.4, CoNCEPLUAL SOIULIONS.......cviiiieiieiieieee e 3

1.5. PhySical ArChItECIUIEcveeveiiee ettt 4

2. WORK PLAN ..ottt ettt ettt se et et et et st n e besbe e eneanas 5
2.1. Work Breakdown Structure (WBS)ccueueiiieiiiesciesiee e 5

2.2 Responsibility MatriX (RM)o.ooiiiiiieee e 6

2.3. Project NEtWOIrK (PIN)ccioiiiieiecse sttt ettt nre e 7

2.4, GANTE CNAITo.viiticiecice ettt bbb ne e e 7

3. DESIGN PROGCESS......cci ittt sttt e et aestestesneenaenseneenes 8
3.1. COMPULET ENGINEEIING ...vviviiiiiieiieste sttt 8
3.1.1. Definition of the Problem ... 8

3.1.2. Review of Technologies and Methods.............cccevveiiiicii e 8

3.1.3. Standards and CONSLIAINTSc.eeveriierieeie e ee e e e e e 13

3.1.4. CoNCEPLUANIZALIONcviiieieie st 14

3.1.5. PhySical ArChITECIUIEocvveiieiece et 15

3.1.6. RISK ASSESSIMENT......ccuiiiieiieieie ittt ettt nens 16

3.1.7. MaAterialiZationccceeiueiieiiere ettt nne s 16

3.1.7.1 ODJECE DELECTION....c.ueiiieiieieie sttt 16

3.1.7.3 UIIaSONIC SENSOKveeueiiiieiieeie ettt sttt sttt st nne s 17

318 EVAIUALION. ...ttt 17

3.2. Electrical and Electronics ENQINEEIINGcccooveiiiiiiriiiiiseeeie e 18
3.2.1. Definition of the Problem............cooieiiic e 18

3.2.2. Review of Technologies and Methodscocvviiiiiniienen e, 18

3.2.3. Standards and CONSLrAINTSccueiierieiie e 19

3.2.4, CoNCEPLUANIZALIONoiiiiciie e 19

3.2.5. PhySiCal ArCNITECIUIE ...c..iiveeiieie et 20

3.2.6. RISK ASSESSMENL.......oiiiiiiiiieiieie ettt sttt sbe e snee e 21

3.2.7. MALeraliZAtIONcveeivieieiie ettt e 22

3.2.8. EVAIUALION......coiiiiciieee s 26

3.3. SOftWAre ENQINEEIINGecviiieiieeiie et sne e ens 27
3.3.1 Interface REQUITEMENTScvoiviiiiiiiiieiieiee et 27

3.3.1.1 USEI INTEITACES. .. ccveiivieie ettt nre s 27

3.3.1.2 SOftWare INTEITACES.......cveiiierie e 28

3.3.2 Functional REQUITEMENTS.c.ciuiiieieeie e s et sre e sre e nneas 28

3.3.2.1 Behaviors of the Software AppliCationcocoovvvieiiieneneee, 28

3.3.2.2 Attributes of the Software AppliCationc.cooovviiiiiiiiiieeee, 28

3.3.2.3 Design and Implementationccccceeveiieeiieie i 29

3.3.3 Nonfunctional ReQUIFEMENTS...........coiveiiiiieiieie et 30

3.3.3.1 Performance ReQUITEIMENTSccuiiiieieieiienie e 30

3.3.3.2 Safety REQUITEMENTSooviiiiiiiiiiisieeiee et 30

3.3.3.3 Security REQUITEIMENTScccivieieiieiie et nneas 30

3.3.3.4 Software Quality ALtrDULESccoveiiiiiiece e 30

3.3.3.5 BUSINESS RUIES.......coitieiiiiieiiesie ettt sneenne s 30

3.3.4 Use-Case MOTEIINGccviiiiiiiiisi e 30

3.3.4.1 ACEON GIOSSAIY.....cuveiveeieeiiecieesie ettt te e sttt s ste e e steebesneenre s 30

3.3.4.2 USE-CASE GIOSSANYeeveivieiiieiieie ittt sttt sre e ste e sneesne s 31

3.3.4.3 USE-CASE SCENAIOSeeuveerieieerieesiesieesieeseesseeseeeseesseesseassesseesseasessessseensessenssens 31

3.3.4.4 USE-CASE DIAGIAMecveiiiiiiieitesie sttt 33

3.3.5 Data MOAEliNGccviiieie e e 34

3.3.5.1 ACHIVILY DIAQIAMccvieiiiieieeie ettt re e enne s 34

3.3.5.2 SEQUENCE DIAGIAMSviuieieieite sttt 35

3.3.5.3 PrOCESS DIAGIAM .. .cuiiiiiiiiiiieite sttt bbb 36

4, RESULTS oottt sttt sttt et e st et e e et et e bt r et et e e neens 37
O R @ o1 (41 72 11 o] o PSSR RTR 37

A LT) 1 oF: L1 o] OSSR 38

5. CONCLUSION ...ttt ettt b e re s e e e et et e sbesbeabeeneenaenneneens 39
ACKNOWLEDGMENT ...ttt sttt st e e et e et e e e nae e e e naeeannaeannaeas 40
REFERENGCESottt sttt b ettt se ettt ene bt e et e 41

APPENDIX VEHICLE MOTOR CONTROL......ccciiiiiiiiiiniiiii e 43

APPENDIX LINE DETECTIONcooiiiiiii e 45
APPENDIX MOBILE APPLICATION. ..ottt 47
APPENDIX VEHICLE LOG WRITEooiiiiii 52
APPENDIX MAIN Lo e 53

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.

LIST OF TABLES

Responsibility matrix fortheteam..................oooiii i e, 6
LiDraries and VEISIONSccooiueiieiieieiie et st 28
BASIC TRALUIES ...t 28
Important iNFOrMAatioNcccooveiiee e 28
USE CBSE ...ttt ettt ettt ekt b e R e nn e n e nnee s 31
USE CASE SCENAIOSvveveereeeiiesieesiesseesteeseeeseesseeseesseestaessesseesseaneesseesseeneesseensens 31
Notation between database and applicationccccceveiiienininiinicicee, 32
0SS ..ttt b et n e nnr e ne e e 38

viii

LIST OF FIGURES

Figure 1. System interface diagramcccocceiieiiiiiiiierece e 4
Figure 2. Project NEIWOIKcooiiiiiiiiiiiieeee e 7
Figure 3. Timelineg fOr ProjeCtccociveiiiie i 7
Figure 4. Overview of Object Recognition Computer Vision Tasksc.cccccevrveennenn. 9
Figure 5. Image ClasSifICAtION...........cocoiiiiiiiicice s 9
Figure 6. Image eXample ..o 11
FIQUIE 7. CaNNY BUQE......eeiveeieciee ettt sttt e e e te e e sreesneeneennes 12
Figure 8. DeteCted lINEScc.oiiiiiee e 13
FIgure 9. CONNECTION ISSUBS..........oiveiteitiriisieeiieieie ettt bbb 19
Figure 10. Proteus scheme Of the Projectccocoveiiiiiiiiiieeee e, 20
Figure 11. Fritzing scheme of the Project.........cccevviieieeii i 21
Figure 12. Chassis of the VENICIE...........cccociiiiiii e 22
Figure 13. Steering With DC MOTOKcooiiiiieieiee e 22

Figure 14.

Ultrasonic sensor binding and steering with a servo to control with angles23

Figure 15. Changing DC motor to a higher torque motorcccccceevveveivie e v 23
Figure 16. L298n Motor Driver connection with adjustable webcam port................... 24
Figure 17. End of the aSSembly ..., 24
FIQUIe 18. NEW ChaSSIS.ccviiiiiieiie it 25
Figure 19. Size COMPATISONc.eciuieieiiiectecie ettt re e esae e ans 25
Figure 20. Updated ChasSSIS.........cciveiiiieiieie ittt 26
Figure 21, USEr INTEITACEoviieiee e 27
Figure 22. Database SCreNSNOLS.oiiiiiiiieiees e 29
Figure 23. USE CaSE L aNd 2......ccuieiiiiiiieiie sttt 33
Figure 24. USe CaSE L aNd 2.......ccueeiuiiiiieiie ettt 34
Figure 25. SEQUENCE AIAGTAMS.citiiiiiiiieieieie ettt 35
Figure 26. ProCess GIAQIaMooeiiiiiiiinieiee ettt 36

file:///C:/Users/pc/Desktop/projeler/raspberry/4992Report1080Draft.docx%23_Toc41855040
file:///C:/Users/pc/Desktop/projeler/raspberry/4992Report1080Draft.docx%23_Toc41855047
file:///C:/Users/pc/Desktop/projeler/raspberry/4992Report1080Draft.docx%23_Toc41855052

CMP
EEE
SEN
YOLO
R-CNN
ROS
Lidar
API
GPU
CPU

FPS

LIST OF ABBREVIATIONS

Computer Engineering

Electrical and Electronics Engineering
Software Engineering

You Only Look Once

Region Convolutional Neural Network
Robot Operating System

Light Detection and Ranging
Application Programming Interface
Graphical Process Unit

Central Process Unit

Frame per Second

The general subject is making an autonomous vehicle.

CMP Department (Machine Learning and decision software)

Senem is responsible for lane and road strip detection and response algorithms.

Zeynep is responsible for traffic stop signs, and speed limit signs detection and response
algorithms.

Fahri is responsible for decision algorithms with required sensors. This member is also co-
responsible with an EEE student for information flow between the decision software and
vehicle hardware.

Some of the above students will help with implementing computing and the required camera

system.

EEE Department (Vehicle and sensors)

Cankat is responsible for the code of the vehicle movements (velocity adjustment according to
the voltage of the driver, servo angle adjustment, etc.). This member is also responsible for
the vehicle’s basic movement commands.

Alperen is responsible for hardware optimization and physical build of the vehicle (adjusting
gears, etc.), computing platform with required sensors (e.g., ultrasonic distance sensor). This
member is also co-responsible with a CMP student for information flow between the decision
algorithm and vehicle hardware.

SEN Department (Mobile application, Data recording, and display)
Denizhan will prepare a mobile application and a suitable database for recording all
actions/decisions taken by the vehicle.

1.1. Identification of the Need

Product is an autonomous car that is also known as a driverless car, robot car, self-driving car,

or autonomous vehicle.

1.2. Definition of the Problem

The vehicle accident rates have risen due to the increase of the vehicles which are used by
humans. To decrease the accident rates, the vehicles should be replaced with autonomous

feature cars. This feature’s purpose is based on lowering the human factor.

Functional feature objectives wanted:

- The vehicle should be able to move with a wide range of speed so that the performance can
be measured as a function of vehicle speed. For this, the vehicle speed needs to be measured
by the vehicle.

- The speed of the vehicle should be able to be controlled by road signs.

- The vehicle should be capable of staying within the lane at all times.

- The lane should be no wider than three car width.

- The vehicle should be able to avoid objects by changing lane safely, otherwise by braking
(the vehicle should not crash into any encountered objects).

Functional feature objectives achieved:

- The speed of the vehicle can be controlled by an algorithm-motor driver.

- The vehicle can move at three different paces with the required angle.

-The vehicle can detect the line

Problems occurred
e Lack of computing power(overloaded processor)

e Following the lane

1.3. Standards and constraints

e Environmental effects
Vehicle accident rates will be drop. Reduce carbon emission
e Social effects
Since the driver does not have to drive the vehicle, s/he will able to enjoy the travel with the
others if there are any.
e Economic effects
Because the autonomous option requires a greater amount of money, those vehicles will be
purchased with a major expense. Also, the drop rate of car accidents will affect the economy.
e Ethical issues
Some people might say it is better to be used by humans rather than the machine itself.
e Health and safety
It is safer for the machine to drive itself than a conflict-error, which is caused by humans, and

resting for the driver will be at better ease.

1.4. Conceptual Solutions

Communication concepts;

Arduino slave-raspberry master, no communication (Only Works with raspberry’s
processor)

To overcome the overload in raspberry’s processor, the Electrics and Electronics
Engineering department came up with a solution, which is creating a wired communication
network between raspberry and Arduino. The Project right now uses only raspberry’s processor;
if needed, the concept of communication will change from none to master and slave with USB

Line detection concepts;

Deep learning was the other conceptual method for line detection. Due to the power of
the raspberry may not be enough; it was not the chosen concept for the vehicle. Image

processing was the one that was suitable for the system.

Vehicle code decision types

Behavior cloning, the decision algorithm

1.5. Physical Architecture

To be able to work, the system needs inputs. The system has two inputs which are visual and
sound waves. The visual inputs separate in two; object detection and line detection. A sound
wave is used to measure the distance. Raspberry uses those inputs to make calculations in a
subsystem by using modules and certain codes. After completing those calculations, Raspberry
sends information signals to the drivers and motors by using a decision algorithm. While
deciding the algorithms, Raspberry sends the work that is printed as logs to the database which

can be observed via using a mobile app. The system interface diagram design can be observed

in Figure 1.
System
Databhase Anp
e
L293n I Motar Driver
Ohject Detection Line Detection Distance |
Maodule Maodule measurement |
! Servo
& V)
= Camera Legend

Rasphberry [Jetson

— Energy
Information
Suhsystermn

U

~» Ultrasonic Sensor

N\ -

Figure 1. System interface diagram

2. WORK PLAN

2.1. Work Breakdown Structure (WBS)

1. Autonomous Car
1.1 Car chassis, wheels, motors, battery
1.1.1 Mechanical/Electrical
1.1.1.1 Order/manufacture parts
1.1.1.2 Circuit scheme draw
1.1.1.3 Assemble
1.2 Car remote communication and control
1.2.1 Communication
1.2.1.1 Order/manufacture control parts
1.2.1.2 Assembly and coding
1.2.2 Motor Control
1.2.2.1 Order/manufacture control parts
1.2.2.2 Assembly and coding
1.3 Decision Algorithm
1.3.1 Object Detection
1.3.2 Line Detection
1.3.3 Distance measurement

1.4 Hardware-Code Optimization

1.5 Car decisions and actions
1.5.1 Database
1.5.2 Mobile App
1.5.2.1 Reading logs
1.5.2.2 Display outputs
1.6 Support
1.6.1 Line
1.6.2 Object
1.6.3 Database
1.6.4 Code organization
1.6.5 Research

2.2 Responsibility Matrix (RM)

Mechanical &

Electrical

Communication

Motor Control
Object

Detection

Line Detection

Distance

Measurement

Database
Mobile App

Integration R S

Table 1. Responsibility matrix for the team

R = Responsible
S = Support

2.3. Project Network (PN)

The project network is shown in Figure 2 according to WBS.

‘1111H1112H111| ".—"T‘ ----------------------------- Ducument]» ————— { Report]
‘1.211}—»{1212'—){121 }—
‘ 1221 H 1222 H 122 }7 Integration Yerification

1.3

132 > 13

13.3

Caa ol usan > 122 > 15
Figure 2. Project network

2.4. Gantt Chart

According to WBS and Project network, a timeline is created for more efficient work as it stated

in Figure 3

Week

Denizhan .5. 1.5.2 1.52.2
Mehmet Fahri &= 1.6.1/1.6.2 ‘1.2.2.2
Senem Tugge T 1.3.2

Zeynep i 1.3.1

Alperen allodl 1.21.1/12.2.1 ‘1.1.1.2/1.1.1.3 121.2/1222/1.4

Cankat allodl 1.6.5 | 121.2/1222/1.4

Integration

Verification

Documentation

Week
Denizhan
Mehmet Fahri [EGR RN | 13/163 14
Senem Tugge
Zeynep
Alperen
Cankat
Integration

Verfication [o
Documentation Draft Draft Report

1.4

Figure 3. Timeline for project

3. DESIGN PROCESS

3.1. Computer Engineering
3.1.1. Definition of the Problem

Thousands of accidents occur around the world every year due to carelessness. Single
neglect can cause the loss of many people. Some of the drivers are not aware of traffic rules.

This rule also applies to an autonomous car. If there is no driver in your vehicle, then
your vehicle must be capable of detecting signs, lines, and any object on the road. Object
detection, line detection, and ultrasonic sensor are essential at this point. A car that cannot detect
objects; lines cannot be classified as an autonomous car. The vehicle can able to detect the lines

and go between these lines. Therefore, nowadays, it is not efficiently possible to use it in traffic.

3.1.2. Review of Technologies and Methods

In the coding part, Google Colab was used because it is easy to share and understand

where the missing and error part.

3.1.2.1 Object detection

The autonomous car must be capable of recognizing the objects near the road. We use
object detection for training the vehicle. This is a technology that does the detection and
classification of the objects from the camera, image, or video. This is a computer vision-related

technology, which is mentioned as an overview in Figure 4.

Object Recognition

I
Image Classification Object Localization

m
Object
Segmentation

Figure 4. Overview of Object Recognition Computer Vision Tasks

Object detection uses image classification and object localization. Image classification
determines the type or class of the object; it gets the image with the objects in it as an input
and serves the image with the classified object as an output. Image localization detects the
location of the object in the image and serves the image with the location frame around the

object. The classification with respect to the image is stated in Figure 5.

Classification with

Image classification e
localization

Detection

llCarll llcar" ‘

v v

One object Multiple objects

Figure 5. Image Classification

Image Classification (left); Classification with localization (center); Detection of
multiple objects (right).

Image Reference: http://datahacker.rs/deep-learning-object-localization/

9

http://datahacker.rs/deep-learning-object-localization/

3.1.2.2 Distance Measurement

In the system, ultrasonic sensors were used to find the distance from any object in front
of the car. In the ultrasonic sensor, there are two sides, one sound output, and sound input.
Ultrasonic sensors are using a 40kHz sound wave. To determine the distance, it sends sound
waves from the output side, and if it encounters anything, it bumps and returns to the source of
the wave to the input side. Another part of the ultrasonic sensor receives this bump, and it
calculates the time between the sensor and the object, which is in front of the car. Because we
know the speed of the sound wave (343.2 m/s), it multiplies time and speed, and then we found
distance. In Raspberry Pi, we will connect this sensor using raspberry's GPIO pins. For the
programming part, we will use the GPIO library in python.

3.1.2.3 Line Detection

For the Line Detection module, the line detection pipeline was designed.
Line Detection Pipeline :

Read the Image

Gray Scale Transform

Canny Edge Detection

Hough lines Identification

Find the Road Lines

10

Read the Image
imread() method is used when the user wants to load an image in the program from
the defined file. imread() function that identified in OpenCV library. In imread() method, the
image name must be specified. In the vehicle system, frames are read in this function. The

image which is shown in Figure 6 is used to test those functions.

Figure 6. Image example

Gray Scale Transform
In Line Detection module, GrayScale Transform makes it difficult to detect the lines,

so Gray Scale Transform was not added in the vehicle system.

11

Canny Edge Detection
In Canny Edge Detection, which is shown in Figure 7, edges are identified. Then the
color of the edges must be changed from the rest of the places in the image. The Canny Edge
Detection function has three parameters. The first parameter reads the image. The second and

third parameters are low and upper ranges.

Figure 7. Canny edge

12

Find the Road Lines
After applied every process identified above, lines will be detected successfully, and

the result is shown in Figure 8

Figure 8. Detected lines

3.1.3. Standards and Constraints

3.1.3.1 Line Detection

For the line detection part, the camera angle view should be adjusted properly because
a smooth image is essential for line detection. If the image is not smooth, then detection will
not work correctly.

The camera may not work decently at certain heights.

We cannot expect the project to work as always in daylight.

We do not identify accident scenarios.

3.1.3.2 Object Detection

YOLO (You Only Look Once) is a technology that is used for object detection.

The basis of YOLO is that this algorithm handles the object detection process as a
single regression problem.

13

In the YOLO algorithm, bounding boxes and the class possibilities for the boxes are
estimated by a single neural network in one evaluation. This makes the algorithm work
extremely fast.

Since the whole detection is a single network, it can be optimized end-to-end directly

on detection action.

YOLO takes an image and split it into an SxS grid, each of the grid there are bounding
boxes. For each box, the network builds a class possibility. The bounding boxes with the class

possibility are selected to locate the object in the image.

The limitations for estimating about bounding box may occur by YOLO, because every
grid cell forecasts only two boxes and they can have just one class. As a result of this limitation,

the objects which are near are been limited for the detecting operation.

3.1.3.3 Decision Algorithm
Rasberry computing power limits the Decision Algorithm. Because of image processing

uses Rasberry’s most of the CPU power.

3.1.4. Conceptualization

3.1.4.1 Object detection

For object detection, there are several algorithms, such as R-CNN, Faster R-CNN, YOLO,
and each algorithm has some drawbacks about them. Object detection becomes very slow

with the R-CNN algorithm because R-CNN does a ConvNet forward pass for each object

proposal.

YOLO algorithm can be the best choice for doing real-time object detection. The reason
makes this algorithm fastest compared to other algorithms is that YOLO passes the image
through a neural network at once and it can guess the coordinates and classes of the object in
that image.

14

Fast R-CNN makes mistakes about background patches in an image for objects because of
couldn’t seeing larger content. YOLO makes much fewer background errors than Fast R-
CNN.

3.1.4.2 Line Detection
Deep Learning based line detection is the other conceptual. A neural network could be
trained. Due to a lack of time and limited Rasberry computing power, Deep Learning was not

used in the vehicle.

3.1.4.3 Decision Algorithm

After researches, in an autonomous car, Behavior Cloning is used a lot. In Behavior
Cloning, car driven by an agent in the track. While the car is driving, the camera takes photos
of the roads. These photos are saved in the folder. While photos are saving, current steering
angle and current speed saved in excel file. Then the model can be trained from this information.
After this process, road photos can give as input, and the model returns steering angle and speed.

Since lack of time and Behavior Cloning was not using a line detection model in the
system.

3.1.4.4 Ultrasonic Sensor

LiDAR is the other option to measure the distance between any object ant vehicle.
LiDAR is more accurate than an ultrasonic sensor. However, it is much more expensive, and

the size is big for a vehicle, although it is heavier for the vehicle.

3.1.5. Physical Architecture

3.1.5.1 Object detection

YOLO algorithm architecture is about 24 convolutional layers and two fully connected
layers.

First, the input image is taken and resized to 448%448 pixels by YOLO. Also, the image
goes through the convolutional network, and after, it gives output in the form of 7x7x30 tensor.
The information about coordinates of the box's rectangle and possibility dispensation over all

classes which the system is trained for is given by the tensor.

3.1.5.2 Decision Algorithm
Decision Algorithm Pipeline:

The first image is taken. In this picture, if any lines detected, then ultrasonic sensor

15

controls if there are any object or not. If there is not any object more than 30 cm, the vehicle
will go. If the vehicle detects the object between 30 cm and 20 cm, speed will decrease, and the
vehicle will print a warning message. Finally, if the distance between vehicle and object, the

vehicle will stop and will print a warning message again.

Since only the Line Detection module and Ultrasonic Sensor were integrated into the

vehicle system. So Decision Algorithm only works depends on Line Detection outputs.

3.1.6. Risk Assessment

Due to COVID-19, the school was closed, but the project has to continue. In this period,
the integration part was started. So, the integration part continued by connecting online. VNC

Viewer helps to connect Raspberry Pi.

3.1.6.1 Object detection

In terms of object detection, there are some risky situations for our car. The idea of the
autonomous car which cannot detect and consider the signs around the road is not
acceptable and safe. In the object detection module, in some situations, according to

YOLO architecture or environmental issues, localization error is seen.

3.1.6.2 Line Detection

In the Line Detection module, there may occur some situations that make the system
risky. The camera angle is important for the situations mentioned. The camera will not
work properly and will not see the lines. So that lines will not be detected and vehicle

unable to turn wheels.

3.1.6.3 Decision Algorithm
In the Decision Algorithm, if CPU loads, the vehicle unable to move.

3.1.7. Materialization
3.1.7.1 Object Detection

For Object Detection, it works separately from the vehicle due to not integrated yet,

16

and our module predicts objects in 56 milliseconds.
3.1.7.2 Line Detection

The line Detection module detects every line in the image out of the track. After
researches, it understood that if the threshold increases, then the problem will solve.

Finally, after tested in the vehicle, it works properly.

Secondly, in Line Detection module, due to the camera angle module was not

working properly. After changing the camera angle, the module worked normally.

In the Line Detection module, the steering angle is calculated. Then the
result of this calculation, angle sends to Servo Motor, and front wheels turn depends
on this angle. In this calculation results, there was some problem that faced. Angle
changed rapidly because the camera takes every frame, and this is the cause of
vehicles that are not working properly. It solved by rounding angels. For example, if
the angle is between 80-89, it rounds the angel to the minimum value. This process

was done in the Decision Algorithm part.

3.1.7.3 Ultrasonic Sensor

As mentioned before (3.1.5.3), if the ultrasonic sensor detects the object between 30
cm and 20cm, it will decrease the speed. If it is closer than 20 cm, it will stop. When
determining these values, it tested on the vehicle and understood that it reduces the

possibility of the crash.

3.1.8. Evaluation

3.1.8.2 Object Detection
The Object Detection module was not integrated into the vehicle so that the optimization
part was not started yet.
3.1.8.2 Line Detection
The vehicle should detect the line and go between 2 lines. The line Detection module
was integrated into the vehicle and tested. After integrated and tested, it understood that vehicle
detects the lines, but when the vehicle comes the curved part of the road, it could not work

17

properly. This problem is trying to fix it. For most of our tests, the vehicle adjusts itself to stay
between the lane on the track.

3.1.8.3 Ultrasonic Sensor

The vehicle should detect the object in front of itself, then change the appropriate line.

From now on, the vehicle detects the object but does not change the road. It stops.

3.2. Electrical and Electronics Engineering
3.2.1. Definition of the Problem

Climate change- fuel consumption, human reaction time, vehicle accident rates

3.2.2. Review of Technologies and Methods

Raspberry pi 4 is a processing unit — board for computing algorithms with required
conditions.

L293n is an H bridge motor driver to run dc or step motors with or without a PWM
signal. PWM signal lets us decide the velocity of the motor.

Servo Motor, a servo motor is an electrical component that allows us to rotate or push
an object. It is just made by simple motor inside is typically servo mechanism. If Servo Motor
consumes DC energy, they called DC Servo Motor. Otherwise, they called as AC Servo
Motor. We can get enough torque servo motors, even if it is small and lightweight packages.
This system is used in many electronics systems. Servo motors are controlled by Pulse with
Modulation in another way to say PWM. The system of PWM is to create a minimum, and
maximum pulse and repetition rate (frequency) also in the basic model of servo motors only
get HIGH (1) or LOW (0) PWM responses.

The Electrics and Electronics department had two communication methods for
the project. They were non-communication and master-slave wired communication
model. This conceptual method for the raspberry to work as a master and make Arduino
as a slave was for decreasing the processor load level, if the processor is already in great

shape, the vehicle will not need any communication network.

18

3.2.3. Standards and Constraints

* Project is based on one car model.

* We do not identify accident scenarios.

« If the speed of the car is high or the surrounding factors are more, due to insufficient
Raspberry Pi power, all processes may slow down.

* As it shown in figure 9, lots of connection issues happen while testing, this is one of

the major problem since it is harder to integrate and test the vehicle.

P8 v viewer X

0 WHC Server is not currently listening for Cloud connections,

Stop

Figure 9. Connection issues

3.2.4. Conceptualization

Every year, there are approximately 1.2 million people who lose their lives because of
car accidents. The number of deaths is equal to 3,000 daily, concepts of a self-driving car is
sensing the environment and moving safely. Main concepts of Electrical Electronics
Engineering department are:

1) Sensor fusion

2) Communication

3) Control
The concepts that the EEE department is responsible for; firstly the ideal sensor fusion can see,
detect and understand the system around the car, secondly if it is needed, a communication
system via using raspberry as a master and Arduino as a slave (to reduce processor load) is

composed by Electrical and Electronics Engineering department, thirdly with using the camera

19

it is planned to keep the vehicle in the road and lastly control all the component system of the

Car.

3.2.5. Physical Architecture

- C1 =C2 N %
1000uF 0.1uF —=—=0C3 —
wF uF
Céb
=
|
| Ui ‘
| GPIOS GPIO4/GPIO_GCLK [} GPIO4 ‘
| GPIOB GPIOTT/GPIO_GENO —U_—S GPIOTT |
GPIO12 GPIOTBIGFIO_GEN1 [—te GPIO1E e
| GPIOI3 GPIO27/GPI0_GEN2 ‘_0 GpPioz7 e
| GPIO16 GPIO22/GPIO_GEN3 f—=—0) GPI022 |
| GPIO10 GPIO23GPIO_GEN4 —O GPIO23 |
| GPIOZ GPIO24/GRIO_GENS i) epm ‘o-
| GPIOZS GPIO2S/GPIO_GENS [ilmme()) GPIO25
GPIO21 GPIO21 o
! epiotomos| =2 MOSI
I 1o Q—- criotamoo GPIOHMISO ——2 MISO \ o . u4
| RXD O] GPIOISRXD0 GPIOTICLK sy <.u< | |
GPIORSPT u[a
} spA Q== GPiozsDAT GPIOTISPI GET GP\DI } NT VeC VS
| S6L O3 GRiousCLE | - ne ouT
2 N3
| e T —————— B v e
| | Raspberry Pi 3 | ?NA our2
7777777777777777777777777777 L ens ouTs |2
1 1
= sENSA ouT4 =it
LJsenss o
Is L268

Figure 10. Proteus scheme of the project

Due to the lack of Proteus’ model libraries (such as raspberry pi four b+ model,
batteries), some of the components are drawn manually like batteries, as the scheme mentioned
in Figure 10. To make a voltage supply, a voltage rectifier circuit is drawn using a diode bridge
and transformers.[26] The Project is also drawn by the Electrics and Electronics Engineering
department by using Fritzing, and the scheme that can be observed in Figure 11 became more

understandable by all members since Fritzing models are easier to understand.

20

Eq A Battery -1
U} l

(I
- Riagzeg yy ”
-|| WA Battery -i
U} u

(I
- Auaggeg wy -H

-|| AA'Battery -'
) L
i

Ausnieq vy _\‘

.| '] A Battery -
U |
(| I

Aiemeq yy \‘

fritzing

Figure 11. Fritzing scheme of the project

3.2.6. Risk Assessment

Due to a late start, the timeline delayed a bit. VVehicle build must be finished in the third
week, but it finished in the fifth week. To solve this pacing problem, task responsibilities have
changed.

Hardware quality for well working autonomous vehicles requires 41.855,43 TL
according to the Open Zeka[29]. So basically, the budget that the autonomous vehicle project
team is low. The hardware is especially expensive, and there must be a failure budget. F.e:
Raspberry is around 400 TL, but the group has 1800 TL total, which is provided by the
university. However, we realized that Raspberry might not be enough for visual detections. This
project needs at least 3000 TL to complete the vehicle with failures.

21

3.2.7. Materialization

The building process of the vehicle started with disassembling an RC car and making it

appropriate for the components to fit. The chassis of the vehicle is shown in Figure 12.

Figure 12. Chassis of the vehicle

Due to the vehicle does not have any ports for servo but a port for DC motor, the tests

are tried with DC motor steering at first, as shown in Figure 13.

Figure 13. Steering with DC motor

22

After a few tests with DC motor, DC motor noted down as inappropriate for turns. Turns
should be done with angles, so with breaking some parts of the vehicle, the team managed to
create a port for servo motor. Also, ultrasonic is connected to Raspberry pi with using a

breadboard, as stated in Figure 14.

Figure 14. Ultrasonic sensor binding and steering with a servo to control with angles

The previous DC motor has not enough torque while turning at higher angles. So the
vehicle's DC motor port is extended using side chisel. The extended port can be seen in Figure
15.

Figure 15. Changing DC motor to a higher torque motor

23

A webcam port is created for a better field of view, the motors connected with H-bridge
motor driver. An adjustable webcam port and H-bridge motor driver can be observed in

Figure 16.

Figure 16. L298n Motor Driver connection with adjustable webcam port

The end of the assembly seems pretty stable. All components have fixed on the chassis
to make them immobile while the vehicle is working. The finished assembly is shown

in Figure 16.

Figure 17. End of the assembly

24

During the process of testing, the vehicle got broken. So all of the hardware carried to
the new chassis, as shown in Figure 18.

Figure 18. New chassis

Due to a weak extension of the servo motor, the new chassis steering is also got
broken. A new and more smaller vehicle bought and all hardwares are carried to the newest

one. Size comparison with respect to the other chassis’ are shown in figure 19.

Figure 19. Size comparison

25

It was a bit challenging to carry hardwares to the newest chassis because it was really

small. Look of the newest chassis is shown in figure 20.

T o

Figure 20. Updated chassis

3.2.8. Evaluation

The vehicle should be able to move with a wide range of speeds so that performance
can be measured as a function of vehicle speed. For this, the vehicle speed needs to be
measured by the vehicle. Speed measurement can be done manually using the duty cycle
function, and the project does not need any external sensors to calculate the speed since
the group members can control the pace of the vehicle.

To make steering with ease, the vehicle steering turned into the servo. With this method,
the decision algorithm can call the angle that is needed.

Giving too much afford to call the other class's function although we set the Python code
construction properly

Broken hardware components delayed the process. f.e. Overloaded DC motor stopped
working, due to too much weight 5V DC motor did not fulfill the required torque, so

the motor changed to a more powerful one

26

3.3. Software Engineering
3.3.1 Interface Requirements
3.3.1.1 User Interfaces

In this application, the GUI has a simple interface, as shown in Figure 21. A blank screen
will be used additional features later. FlatList used for multiple data view, DatePicker used for
filtering logs. The screen can be slideable to view old logs, so interface does not need an external

scroll.

750 ¢ = 0 4 LTES B

Date: 20-05-2020 - Time: 16:05:24

Log: Test Log

Date: 18-05-2020 - Time: 22:31:03

Log: Test Log

Date: 18-05-2020 - Time: 22:30:52

Log: Test Log

Figure 21. User interface

27

3.3.1.2 Software Interfaces

The mobile application is written in React-Native and connected to Firebase. React-Native.
React-Native is written using the Javascript programming language. The system includes these
tools and libraries in Table 2.

Library Version
react-native 0.61.5
Node.js 10.16.3
react-native-webview 9.4.0
react-native-datepicker 1.7.2
firebase 7.9.3
@firebase/database 0.5.22

Table 2. Libraries and versions

3.3.2 Functional Requirements

3.3.2.1 Behaviors of the Software Application

The following functions contain the most basic features of the application in Table 3.

Actor Name

Name of Behavior

Description of Behavior

Mobile Application

firebaseConfig()

Configuration of DB

Mobile Application

readData()

Data reading from DB

Mobile Application

addltemsRefListener()

Data listener for Firebase

Table 3. Basic features

3.3.2.2 Attributes of the Software Application

The following attributes contain information that maintains the most important values of the

application in Table 4.

Actor Name Name of Attribute Description of Attribute
Mobile Application log_index the index number of log
Mobile Application log_data the output from a car
Mobile Application db_status connection control for DB

Table 4. Important information

28

3.3.2.3 Design and Implementation

Database Management System
Firebase Console used for DBMS. The most significant reason for choosing Firebase is that it
provides a real-time database module. It can be accessed from the web page. It provides
developing options, quality options, and analytics options for developers.
Database Schema
The database contains a table as :
o index — primary key
o date - nvarchar(255)
o time - nvarchar(255)
o output - nvarchar(255)
Database Physical Model
"index™ in the table above was used as the primary key. Index is randomly generated while
writing output. “date” and “time” is the separated value of datetime. The reason for their
separation is the use of calendar. The output value includes the action or decision taken by the
car.
Completed Database Screenshots
The table and values in the picture below are for sample visualization only as seen in
Figure 22.

5 Car
5. -M7cj-ihgjKxK40Wh9sq
- date: "15-B5-26828
- output: "Test log
- time: "28:81:51
=|-- -M7¢j30tvQcWrOyt5FCq
- date: "16-B5-20828
- output: "Test log
- time: "20:82:86
0 -M7dG6Nh9Xr-3WQvAxvt
& -M7dG9SrgNmxyr8uZIDg

0- -M7mB3XpCdDfruVniLfP

Figure 22. Database screenshots

29

3.3.3 Nonfunctional Requirements
3.3.3.1 Performance Requirements

As a performance requirement, sufficient space must be left on the processor or ram in
the Raspberry so that the image processing modules do not fail, and if any module fails or is
overloaded, it will affect the writing of the logs into the database.

3.3.3.2 Safety Requirements

As a safety requirement, failure in the image processing modules or sending the log of
the car's decision/action wrong or missing will cause data loss. This may result in missing or

incorrect data to be sent to the application.

3.3.3.3 Security Requirements

As a security requirement, a lot of configurations are required for a database connection.
Even if this configuration information is used by others, there should be also a rule to read and
write on the database side. It should prevent the database from being accessed, written, and read

by anyone.

3.3.3.4 Software Quality Attributes

The real-time module should provide correctness. Database configurations should
provide interoperability between the mobile application and the car. Mobile application and the
car should be tested simultaneously for the reliability of the given log. Finally, the car and

mobile app must be re-tested at different times for the reusability qualification.

3.3.3.5 Business Rules

As a business rule the following scenario is used,;

If the car is running, the decision-making algorithm and the line detection algorithm are running
smoothly, and a log will occur.

Then logs are then written to the database and presented to the user through the mobile
application.

Else no other log occurs, the user cannot follow the car's decisions and actions.

3.3.4 Use-case Modeling
3.3.4.1 Actor Glossary

The project has two main actors. One is the autonomous vehicle and the other is the user.

30

3.3.4.2 Use-case Glossary

To express functional requirements the use-cases shown in Table 5 are defined.

Use-case Name

Description

Participating Actors

Writing Logs

Car write logs to db

Car

Checking Logs

User check car’s actions/decisions

User and car

Table 5. Use case

3.3.4.3 Use-case Scenarios

This use case scenario includes the transfer of logs of the car to the database shown in Table 6.

Use-case Name

Writing Logs

Use-case Description

Car’s actions/decisions will be reported to db

Actors

Car

Pre-Condition

The vehicle should be on the road and the road should be easily

detectable by the camera.

Post-Condition

The car must have made its decision according to the situation on

the road and took action accordingly and send it to the database.

Normal Flow

Step 1: Engine should be started

Step 2: If there is no object in the direction of the vehicle, it can go
in the direction of the vehicle.

Step 3: The vehicle will continue to detect the road and proceed as
long as it does not encounter any situation.

Step 4: As long as it continues to progress, it will continue to report

to the database.

Alternate Flow

Alt-Step 2: If there is an object in front of it, the vehicle will stop,
but it will report it to the database.
Alt Step 3: If the vehicle cannot detect the road, it will continue to

travel based on older data for a while.

Business Rules

If the car does not access the internet, it will stop writing to the

database.

Table 6. Use case scenarios

31

This use case scenario contains notation between the database and the application shown in

Table 7.

Use-case Name

Checking Logs

Use-case Description

Car’s actions/decisions will be displayed on the app

Actors

User and car

Pre-Condition

The user must have an autonomous vehicle and download the
application to her/his phone and complete the connection between

them.

Post-Condition

The user will be able to follow the actions and decisions of the

vehicle step by step.

Normal Flow

Step 1: The user should download the mobile application to his
phone.

Step 2: The user must establish the link between the autonomous
vehicle and the application.

Step 3: If the connection is provided, the user can monitor the
actions and decisions of the vehicle or review them later.

Alternate Flow

Alternative step 2: If the application connection with the car is not

provided, the data cannot be accessed.

Alternative step 3: If the user loses internet access even if they have
made the application connection with the car, they will not be
able to access the current data.

Business Rules

If the mobile application does not access the internet, it will stop

displaying the logs.

Table 7. Notation between database and application

32

3.3.4.4 Use-case Diagram

The figure 23’s top represents use case 1., the bottom represents use case 2.

check engine status | —— Raspberry
(Object control in the Decision making
i —_— direction to travel algorithm
Autonomous \ I —
Vehicle
Line detection in the Line detection
direction to travel algorithm
v
Reporting every
action and decision to)
the database —_— Google Firebaze
he car will move to
itz destination unlezs
there is a problem
Check internet
connection
Download the mobile \
app T~
/ The User
Complete the app
connection with the
car
Autonomous
Vehicle
Google Firebase Check logs

Figure 23. Use case 1 and 2

33

3.3.5 Data Modeling

The main task and functions are listed below

e The user can review the car's decisions/actions on the mobile app.

e The user will have information about the engine of the car, the direction, and the
decision taken.

e The user does not have to inform the system about changes in the external environment.

e The user wants to know the car's decisions and actions through the app.

e The user wants to be informed about whether the engine is running and when there is

any malfunction.

3.3.5.1 Activity Diagram

The figure 24°s left represents the use case 1. and right part represents use case 2.

P
P
® ®
®

\)

) Internet Status |[<—
Engine Status =

User
connected
to internet

lyes

~——= SendlogtoDB |f=—

- ™
| Mobile App Status f&—,
h ,f

Object control

User installed no)
to app

Is there an object
in the direction

~
Carwillstop |
to go S

s ™
| Line detection |

connection
between car

PN

/ \ and application
Can the car > no J
\S‘f the roﬁ
~ lyes
lyes |

e = ~ | User can review logs |
_ The car moves in the | AN vy
_ direction to go Y,

Figure 24. Use case 1 and 2

34

Aulnnnmq‘us vehicle
|

3.3.5.2 Sequence Diagrams

The sequence diagram shows the interaction of objects between two actors in Figure 25.

Ultrasonic Sensor Cuetes e EW G Firebase Mobile App
i i i i i
1 1 | 1 I
1 1 | 1 I
1 | | I |
: | | !

i | 1 I
Engine start } Notify if there is an object } !
| " : |
1 1 I
1 1 I
1 1 i
1 1 |
1
} Connection
} } Notify if object exists and car will be stopped
| | Stop the car if there is an object
| I
|]
|]
1
]
! If there is no object
1
1
1
1
1
1
: .
} Transmit results as long as it sees the way
1
3 |
} 1 Provide information about the vehicle's actions and decisions
!
" Report what to do accofding to the road
|
: Display Logs
1
1
1
I
1
1
1
1
I
1
1

Figure 25. Sequence diagrams

35

3.3.5.3 Process Diagram

The main functions of our application are shown in Figure 26. As seen on the figures, our main
functions are database configuration, database connection check, database reader, and its

listener and include props and state definitions and assignments.

Start

h 4

[firebase.initialize App(firebaseConfig) }

h 4

[componentWillMount{) }

h

componentDidMount()

fthis. additemsReflistener(this itemsRef) } additemsReflistener(itemsRef) {;

End }: [this. setState(})

Figure 26. Process diagram

36

4. RESULTS

4.1 Optimization

Lane Width
Line widths are reduced on a great scale to make lines fit the camera angle. Since the
required hardware for a well working autonomous car has more expenses, the codes are adapted

concerning the low budget vehicle.

Sharp Turns

While entering sharp turns, vehicle FPS and lane width were not enough to detect the
lines. To get by from this issue, lane widths are decreased as it mentioned at the Lane Width
part and to optimize the hardware with lane model, only at the higher angle turns which is above
120, and below 60 degrees, the duty cycle is higher to get rid of the torque issue, and it runs
periodically. F.e; 1 sec forward, 1 sec stop at higher angles.

Lane Swapping

When the ultrasonic sensor detects the object distance between 70 cm and 80 cm, it will
reduce the speed, and then if the distance is less than 70 cm, the vehicle will stop and wait 5
seconds. After 5 seconds, if the object still in the same place, Lane Swap function will work.
Lane Swap function works only for one lane for now. From now on, it swaps left lane. Lane
Swap function will be developed depends on finding where the strips are. It works The Lane
Swapping function turns the vehicle's wheels 45 degrees to the left and moves for about 3
seconds. Then waits 1.5 seconds and turns the wheels 60 degrees to the right, moving for 2
seconds. So it is moving into the left lane. Finally, the line Detection module is triggered and
continues to follow the lane. After lane swapping, the Line Detection Module sometimes cannot
detect the lines properly due to the camera angle. So line following is not working properly

after lane changes.

Hooked Cables
Even the threads are managed, the cables still exceed the lane widths. Since cables exceed the
lanes, vehicle threads may be hooked by an object while overtaking it. Moreover, it reduces the

pace or even stops the vehicle in a significant amount.

37

Servo Voltage
Servo voltage is supplied by the same battery with DC motors to make Raspberry pi run with

optimal values.

4.2 Verification

Hardware Test

All hardware components have been tested and verified.

Log Test
SEN part is completed, the vehicle movement logs can be seen via mobile app efficiently.

Control Test

DC and servo control functions are verified.

Line Detection
Tests have been accomplished by using a webcam and the road model. Lines are appropriately
detected.

Ultrasonic Test
According to tests, the ultrasonic sensor needs to aim the object with 90 degrees. Otherwise,
the sound that ultrasonic sends reflects from the object in front of it and can not measure the
distance properly. The ultrasonic functions have verified.

List the cost of each component and any other costs. This can be a tabulated list, as

shown in Table 8 below.

Component Cost (TL)

Raspberry pi 4b+ 423.74
Raspberry pi Adaptor 25
Chassis(prop chassis+rc car chassis) 184.90
L298n(x4) 40
MG945 servo 45.94
RS-380 DC motor 19.51
12 V rechargeable battery 121.06
Breadboard, cables and other materials 161.11
Black cardboard(x7) 104.30
TOTAL 1125.56

Table 8. Costs

38

5. CONCLUSION

Before COVID-19, hardware components are tested, after COVID-19 epidemic
explosion, the group exposed to work from home. While doing that, majority of the
requirements have accomplished but unfortunately, the internet connection problems made
project harder to integrate. The integrated modules are; ultrasonic sensor, line detection, real
time log application. Unfortunately, the object detection module was not integrated.

Accomplished tasks; Lane following, autonom break with respect to distance, lane
changing, sending car decisions to an application. (Those are accomplished in the older chassis,
due to broken steering component the hardwares are carried to the new chassis)

Accomplished skills; integrating different modules with a certain decision algorithm and
make it working in a harmony.

The project hardwares can be upgraded. The components that might upgrade in the
future are; board: Raspberry Pi to Jetson, sensor: ultrasonic to LIDAR, if the board is still
Raspberry Pi, Google’s TPU accelarator can be used to increase visual performance, webcam

to ZED webcam for higher field of view.

39

ACKNOWLEDGMENT

We wish to thank our advisers Dr. Gérkem Kar, Dr. Ozge Yiicel Kasap and Dr. Andrew John

Beddall for their supports.

This work was partly funded by Bahgesehir University.

40

10.

11.

12.

13.
14.

15.

16.
17.
18.

19.
20.
21.
22.

REFERENCES

https://www.pyimagesearch.com/2017/09/18/real-time-object-detection-with-
deep-learning-and-opencv/

https://thedatafrog.com/en/human-detection-video/
http://bakeaselfdrivingcar.blogspot.com/2017/06/project-1-lane-detection-with-
opencv.html

https://lwww.kaggle.com/soumya044/lane-line-detection
https://stackoverflow.com/questions/55208430/nonetype-error-when-using-cv2-
houghlinesp-function-put-by-images
https://pysource.com/2018/03/07/lines-detection-with-hough-transform-opencv-
3-4-with-python-3-tutorial-21/
https://www.geeksforgeeks.org/line-detection-python-opencv-houghline-
method/

https:/lwww.geeksforgeeks.org/opencv-real-time-road-lane-detection/
https://lwww.aisangam.com/blog/read-write-and-display-video-frames-with-
opencv/

https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_lines/hough

_lines.html

https://answers.opencv.org/question/179778/distance-between-2-points-in-
opencv-pixel-to-cm/
https://medium.com/@denizkilinc/python-ile-veri-tan%C4%B 1maya-ve-temel-
i%CC%87statisti%C4%9Fe-dal%C4%B 1% C5%9F-7e1028270ac
https://linuxhint.com/python_vectors_matrices_arrays/
https://lwww.instructables.com/id/Autonomous-Lane-Keeping-Car-Using-
Raspberry-Pi-and/
https:/ftowardsdatascience.com/deeppicar-part-4-lane-following-via-opencv-
737dd9e47c96

https://python-control.readthedocs.io/en/0.8.3/steering.html
STMicroelectronics L298 Dual Full-Bridge Driver datasheet
https://lwww.electronicshub.org/raspberry-pi-1298n-interface-tutorial-control-dc-
motor-1298n-raspberry-pi/

https://github.com/yohendry/arduino_L298N
https://firebase.google.com/docs/database/web/start
https://freactnative.dev/docs/getting-started

https:/irnfirebase.io/

41

https://www.pyimagesearch.com/2017/09/18/real-time-object-detection-with-deep-learning-and-opencv/
https://www.pyimagesearch.com/2017/09/18/real-time-object-detection-with-deep-learning-and-opencv/
https://thedatafrog.com/en/human-detection-video/
http://bakeaselfdrivingcar.blogspot.com/2017/06/project-1-lane-detection-with-opencv.html
http://bakeaselfdrivingcar.blogspot.com/2017/06/project-1-lane-detection-with-opencv.html
https://www.kaggle.com/soumya044/lane-line-detection
https://stackoverflow.com/questions/55208430/nonetype-error-when-using-cv2-houghlinesp-function-put-by-images
https://stackoverflow.com/questions/55208430/nonetype-error-when-using-cv2-houghlinesp-function-put-by-images
https://pysource.com/2018/03/07/lines-detection-with-hough-transform-opencv-3-4-with-python-3-tutorial-21/
https://pysource.com/2018/03/07/lines-detection-with-hough-transform-opencv-3-4-with-python-3-tutorial-21/
https://www.geeksforgeeks.org/line-detection-python-opencv-houghline-method/
https://www.geeksforgeeks.org/line-detection-python-opencv-houghline-method/
https://www.geeksforgeeks.org/opencv-real-time-road-lane-detection/
https://www.aisangam.com/blog/read-write-and-display-video-frames-with-opencv/
https://www.aisangam.com/blog/read-write-and-display-video-frames-with-opencv/
https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_lines/hough_lines.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_lines/hough_lines.html
https://answers.opencv.org/question/179778/distance-between-2-points-in-opencv-pixel-to-cm/
https://answers.opencv.org/question/179778/distance-between-2-points-in-opencv-pixel-to-cm/
https://medium.com/@denizkilinc/python-ile-veri-tan%C4%B1maya-ve-temel-i%CC%87statisti%C4%9Fe-dal%C4%B1%C5%9F-7e1028270ac
https://medium.com/@denizkilinc/python-ile-veri-tan%C4%B1maya-ve-temel-i%CC%87statisti%C4%9Fe-dal%C4%B1%C5%9F-7e1028270ac
https://linuxhint.com/python_vectors_matrices_arrays/
https://www.instructables.com/id/Autonomous-Lane-Keeping-Car-Using-Raspberry-Pi-and/
https://www.instructables.com/id/Autonomous-Lane-Keeping-Car-Using-Raspberry-Pi-and/
https://towardsdatascience.com/deeppicar-part-4-lane-following-via-opencv-737dd9e47c96
https://towardsdatascience.com/deeppicar-part-4-lane-following-via-opencv-737dd9e47c96
https://python-control.readthedocs.io/en/0.8.3/steering.html
https://www.electronicshub.org/raspberry-pi-l298n-interface-tutorial-control-dc-motor-l298n-raspberry-pi/
https://www.electronicshub.org/raspberry-pi-l298n-interface-tutorial-control-dc-motor-l298n-raspberry-pi/
https://github.com/yohendry/arduino_L298N

23.
24.
25.
26.

27.
28.
29.

https://reactnavigation.org/docs/drawer-based-navigation/
https://nodejs.org/api/documentation.html
https://github.com/nhorvath/Pyrebase4
https://electronics.stackexchange.com/questions/73863/cap-value-for-full-wave-
rectifier-circuit

https://arxiv.org/pdf/1807.05511.pdf
https:/lwww.electronicoscaldas.com/datasheet/MG995 Tower-Pro.pdf

https://lembedded.openzeka.com/urun/mini-otonom-arac-Kkiti/

42

https://github.com/nhorvath/Pyrebase4
https://electronics.stackexchange.com/questions/73863/cap-value-for-full-wave-rectifier-circuit
https://electronics.stackexchange.com/questions/73863/cap-value-for-full-wave-rectifier-circuit
https://arxiv.org/pdf/1807.05511.pdf
https://www.electronicoscaldas.com/datasheet/MG995_Tower-Pro.pdf
https://embedded.openzeka.com/urun/mini-otonom-arac-kiti/

APPENDIX VEHICLE MOTOR CONTROL

import sys

import RPi.GPIO as GPIO
from time import sleep
inl=24

in2=23

ena =25

in3=17

in4 =27

enb =22
#GPlO.setwarnings(False)
#fbdeki setup
GP10.setwarnings(False)
GPIO.setmode(GPI0.BCM)
GPIO.setup(in1,GPI0.0OUT)
GPIO.setup(in2,GPI0.0OUT)
GP10.setup(ena,GPIO.OUT)
servoPIN =17
GP10.setmode(GPI0.BCM)
GP10.setup(servoPIN, GPI0.0OUT)

¢ = GPIO.PWM(servoPIN,50) # GPIO 17 for PWM with 50Hz
c.start(2.5) # Initialization

p=GPI0.PWM(ena,1000)
#rldeki setup
GPIO.setup(in3,GPI0.OUT)
GPIO.setup(in4,GPI0.0OUT)
GPIO.setup(enb,GPI0.0OUT)

def setpstart(x):
p.start(x)

defileri():
GPIO.output(24,GPIO.HIGH)
GPIO.output(23,GPIO.LOW)

def geri():
#Arac geri gider
GPI0.output(in1,GPIO.LOW)
GPI0.output(in2,GPIO.HIGH)

def dur():
#Arac durur
GPI0.output(in1,GPIO.LOW)
GPI0.output(in2,GPIO.LOW)

def dusuk_ilerle():
#Arac dusuk hizda ilerler
p.ChangeDutyCycle(15)

def orta_ilerle():

#Arac orta hizda ilerler
p.ChangeDutyCycle(20)

43

def yuksek _ilerle():
#Arac yuksek hizda ilerler
p.ChangeDutyCycle(25)

def servo(angle):
angle = float(angle)
c.ChangeDutyCycle(2+(angle/18))
#time.sleep(0.5)
#c.ChangeDutyCycle(0)

44

APPENDIX LINE DETECTION

import cv2
import numpy as np
import math

def Croppedimage(edges):

height, width = edges.shape
mask = np.zeros_like(edges)

poly = np.array([[
(0, height * 1/ 2),
(width, height * 1/ 2),
(width, height),
(0, height),
11, np.int32)

cv2 fillPoly(mask, poly, 255)
croppedEdges = cv2.bitwise_and(edges, mask)

return croppedEdges

def DrawLine(frame, lines):

frame = np.copy(frame)
blank = np.zeros((frame.shape[0], frame.shape[1], 3), dtype=np.uint8)
counter=0
for line in lines:

#print(counter,'--', line)

counter+=1

for x1, y1, x2, y2 in line:

cv2.line(blank, (x1,y1), (x2,y2), (0, 200, 0), thickness=10)

frame = cv2.addWeighted(frame, 1, blank, 1, 0.9)
return frame

old_angle=90

def LineDetectionimage(frame):
image = frame

height = image.shape[0]
width = image.shape[1]

#GrayScale = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
MedianBlurDetection = cv2.medianBlur(image,5)
CannyDetection = cv2.Canny(image, 100, 200)
try:
CroppedimageFunction = Croppedimage(CannyDetection)
rho=1
theta=np.pi/180
lines = cv2.HoughlLinesP(CroppedimageFunction,

45

rho,

theta,
threshold=30,
lines=np.array([]),
minLineLength=8,
maxLineGap=4)

#print('0',lines[0][0])
#print('1',lines[1][0])
#print('2',lines[2][0])
#print('3',lines[3][0])
#total_lines =

_, _, left_side, _=lines[0][0]
_, _, right_side, _ =lines[1][0]

mid = int(width / 2)
x_side = (left_side + right_side) / 2 - mid
y_side = int(height / 2)

Radian = math.atan(x_side / y_side)
MiddleAngle = int(Radian * 180.0 / math.pi)
SteeringAngle = MiddleAngle + 90

WithImage = DrawLine(image, lines)
global old_angle
old_angle=SteeringAngle

response = [WithImage,SteeringAngle]
return response

except Exception as e:

print(e)

return [frame,old_angle]

46

APPENDIX MOBILE APPLICATION

import React, {Component} from 'react’;
import {
TouchableOpacity,
Button,
View,
Text,
StyleSheet,
FlatList,
} from 'react-native';
import * as firebase from 'firebase/app’;
import 'firebase/database’;
import {WebView} from 'react-native-webview';
import DatePicker from 'react-native-datepicker’;

console.disableYellowBox = true;

const firebaseConfig = {
apiKey: '-',
authDomain: '-',
databaseURL: '-',
projectld: '-',
storageBucket: '-',
messagingSenderld: '-',
appld: '-',
measurementld: '-',

b

if (firebase.apps.length) {
firebase.initializeApp(firebaseConfig);

}

const data = [];

export default class HomeScreen extends Component {
constructor(props) {
super(props);
this.itemsRef = firebase.database().ref('Car');
this.state = {
arrData: [],
date: ",
font: styles.post,
7
}

addltemsRefListener(itemsRef) {
itemsRef.on('value', snap => {
if (snap.val()) {
itemsRef.once('value').then(snapshot => {
const items = [];
let counter =0;
snapshot.forEach(child => {
if (this.state.date !1=="") {
if (this.state.date === child.val().date) {
counter++;
items.push({
date: child.val().date,

47

time: child.val().time,
output: child.val().output,
1
}
this.setState({font: styles.post});
}else {
items.push({
date: child.val().date,
time: child.val().time,
output: child.val().output,

1;
this.setState({font: styles.post});
}
1;
if (this.state.date !==""' && counter === 0) {

items.push({
date: 'None',
time: 'None',
output: 'No data on this day',

N
this.setState({font: styles.empty});
}
this.setState({arrData: items.reverse()});
N
}
N

}

componentWillMount() {
//this.getData();
}

componentDidMount() {
this.addItemsRefListener(this.itemsRef);
}

renderPost = post => {
return (
<View style={styles.feeditem}>
<View style={{flex: 1}}>
<View
style={{
flexDirection: 'row’,
justifyContent: 'space-between’,
alignltems: 'center’,
>
<View>
<Text style={styles.index}>
Date: {post.date} - Time: {post.time}
</Text>
</View>
</View>
<Text style={this.state.font}>Log: {post.output}</Text>
<View style={{flexDirection: 'row'}} />
</View>
</View>

48

);
b

render() {
return (
<View style={styles.container}>
<View style={{flex: 5}}>
{/*<WebView*/}
{/* source={{*/}
{/* uri: 'https://www.youtube.com/embed/21X5IGIDOfg',*/}
{/* W/}
{/*/>*/}
</View>
<View
style={{
flexDirection: 'row’,
justifyContent: 'center’,
alignltems: 'center’,
>
<DatePicker
style={{
width: 310,
backgroundColor: '#909090',
marginTop: 8,
marginBottom: 2,

1
date={this.state.date}
mode="date"

placeholder="Select Date"
format="DD-MM-YYYY"
minDate="01-01-2020"
maxDate="31-12-2020"
confirmBtnText="Confirm"
cancelBtnText="Cancel"
customStyles={{
datelcon: {
position: 'absolute’,
left: 2,
top: 4,
marginLeft: 0,
2
datelnput: {
marginLeft: 0,
2
placeholderText: {
fontSize: 15,
color: '#000',
2
dateText: {
fontSize: 15,
color: '#000',
2
1
onDateChange={date => {
this.setState({date: date});
this.addItemsRefListener(this.itemsRef);

1}

49

/>
<TouchableOpacity
style={{
marginLeft: 10,
height: 30,
>
<Button
title="Reset"
color="#ff5c5c"
onPress={date => {
this.setState({date: "});
this.addItemsRefListener(this.itemsRef);
I
/>
</TouchableOpacity>
</View>
<View style={{flex: 4}}>
<FlatList
style={styles.feed}
data={this.state.arrData}
renderltem={({item}) => this.renderPost(item)}
keyExtractor={this.keyExtractor}
showsVerticalScrollindicator={false}
/>
</View>
</View>
);
}
}

const styles = StyleSheet.create({
container: {
flex: 1,
backgroundColor: '#EBECF4',
b
feed: {
marginHorizontal: 16,
2
feedltem: {
backgroundColor: '#FFF',
borderRadius: 5,
padding: 8,
flexDirection: 'row",
marginVertical: 8,
b
index: {
fontSize: 15,
fontWeight: '500',
color: '#000',
b
post: {
marginTop: 16,
fontSize: 15,
color: '#000',
b
empty: {
marginTop: 16,

50

fontSize: 15,
color: '#ff5c5c',
fontWeight: 'bold’,
2
N

51

APPENDIX VEHICLE LOG WRITE

import pyrebase
from datetime import datetime

configDB = {
"apiKey": '-',
"authDomain": '-',
"databaseURL": '-,
"projectld": '-',
"storageBucket": '-',
"messagingSenderld": '-',
"appld": -,
"measurementld": '-',

}

firebase = pyrebase.initialize_app(configDB)
db = firebase.database()

dt_date = datetime.now().strftime("%d-%m-%Y")
dt_time = datetime.now().strftime("%H:%M:%S")

data = {'date": dt_date, 'output': 'Test Log', 'time": dt_time, }
db.child("Car").child(db.generate_key()).set(data)

last_record = db.child("Car").order_by_key().limit_to_last(1).get().val()
print(last_record)

52

APPENDIX MAIN

import arabakontrol

import time

import linev2

from SensorClass import distanceSensor
import imutils

import cv2

from imutils.video import VideoStream
import math

import firebasedlog

vs = VideoStream(src=0,resolution=(50,50)).start()
sensor = distanceSensor(6,5)

last_angle =90

arabakontrol.servo(last_angle)

def roundup(x):
return int(math.ceil(x / 10.0)) * 10

def turning_with_angle(angle):
arabakontrol.servo(angle)
arabakontrol.setpstart(25)
arabakontrol.dur()
arabakontrol.ileri()

def straight_forward(angle):
arabakontrol.servo(angle)
arabakontrol.setpstart(18)
arabakontrol.dur()
arabakontrol.ileri()

def turn_with_time(angle):
stop_counter=0
go_counter=0
arabakontrol.servo(angle)
while stop_counter < 5:
arabakontrol.dur()
stop_counter +=1
time.sleep(0.05)
stop_counter =0
while go_counter < 5:
arabakontrol.setpstart(33)
arabakontrol.ileri()
go_counter+=1
time.sleep(0.05)
go_counter=0

def sensor_control():
return sensor.get_distance()

def move_back(angle):
geri_counter=0
arabakontrol.setpstart(20)
arabakontrol.dur()

53

arabakontrol.servo(angle)

while geri_counter < 15:
arabakontrol.geri()
geri_counter+=1
time.sleep(0.05)
print(geri_counter,'going back')

def slow_forward(angle):
arabakontrol.servo(angle)
arabakontrol.setpstart(13)
arabakontrol.ileri()

def laneSwap(direction):
arabakontrol.setpstart(25)
swapcounter =0
secondCounter =0
stopCounter =0
if direction == 1:
arabakontrol.servo(135)
while swapcounter <= 28:
arabakontrol.ileri()
swapcounter +=1
time.sleep(0.05)
print(swapcounter,'going forward')
firebasedblog.savelog('going forward')
arabakontrol.servo(30)
while stopCounter <=15:
arabakontrol.dur()
stopCounter +=1
time.sleep(0.05)
print(stopCounter, 'Stopping')
firebasedblog.savelLog('Stopping')
while secondCounter <= 20:
arabakontrol.ileri()
secondCounter +=1
time.sleep(0.05)
print(secondCounter, 'l am okay, lets go!!')
firebasedblog.savelLog('l am okay, lets go!!')

else:
arabakontrol.servo(45)
while swapcounter <= 25:
arabakontrol.ileri()
swapcounter +=1
time.sleep(0.05)
print(swapcounter,'going forward')
firebasedblog.savelog('going forward')
arabakontrol.servo(30)
while stopCounter <=15:
arabakontrol.dur()
stopCounter +=1
time.sleep(0.05)
print(stopCounter, 'Stopping')
firebasedblog.savelog('Stopping')
while secondCounter <= 15:
arabakontrol.ileri()
secondCounter +=1

54

time.sleep(0.05)
print(secondCounter, 'l am okay, lets go!!')
firebasedblog.savelLog('l am okay, lets go!!')

def angle_optimizer(angle):
global last_angle
if last_angle < 160 and last_angle > 20:
if abs(last_angle - angle) <= 20:
return angle
else:
if last_angle >90:
angle -=10
return angle
elif last_angle <= 90:
angle +=10
return angle

else:
return angle

waitcounter =0

while True:

frame = vs.read()

lanes,steer_angle = linev2.LineDetectionImage(frame)

steer_angle = roundup(steer_angle)

print('Stable Angle',steer_angle)

cv2.imshow('Yol',lanes)

print('Line Angle',steer_angle)

#if steer_angle =270 and steer_angle <160 and steer_angle>20:
#print('Stable Angle',steer_angle)
#steer_angle = angle_optimizer(steer_angle)
#last_angle = steer_angle #stored the needed value

if steer_angle <= 120 and steer_angle >= 60:
distance = sensor_control()
print('Distance :',distance)
if distance >= 80:
straight_forward(steer_angle)
elif distance <= 80 and distance >= 70:
print('An object detected. Slowing...")
firebasedblog.savelog
slow_forward(steer_angle)
elif distance < 70:
print('An object detected in close range. Stopped...")
firebasedblog.savelLog('An object detected in close range. Stopped...")
arabakontrol.dur()
waitcounter +=1
print(waitcounter)
if waitcounter == 30:
laneSwap(1)
waitcounter =0
elif (steer_angle > 120 or steer_angle < 60) and steer_angle != 270 and steer_angle <161 and steer_angle>21:
turn_with_time(steer_angle)
else:
#print('angle does not seem normal, check it, go back',steer_angle)
#move_back(last_angle)

55

turn_with_time(last_angle)
pass

key = cv2.waitKey(1) & OxFF
if key == ord("q"):
break

56

